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Abstract
Starting from the basic-exponential, a q-deformed version of the exponential
function established in the framework of the basic-hypergeometric series, we
present a possible formulation of a generalized statistical mechanics. In a
q-nonuniform lattice we introduce the basic-entropy related to the basic-
exponential by means of a q-variational principle. Remarkably, this distribution
exhibits a natural cut-off in the energy spectrum. This fact, already encountered
in other formulations of generalized statistical mechanics, is expected to be
relevant to the applications of the theory to those systems governed by long-
range interactions. By employing the q-calculus, it is shown that the standard
thermodynamic functional relationships are preserved, mimicking, in this way,
the mathematical structure of the ordinary thermostatistics which is recovered
in the q → 1 limit.

PACS numbers: 05.20.−y, 05.70.Ce, 05.90.+m, 65.40.Gr, 02.20.Uw

1. Introduction

There has recently been a great deal of interest in investigating deformed thermodynamic
systems at the classical level. Such deformed theories are believed to deal with the statistical
behaviour of complex systems, whose underlying dynamics is spanned in a multi-fractal
phase space, governed by long-range interaction and/or long-time memory effects [1–4]. A
possible fruitful mechanism capable of generating a deformed version of the classical statistical
mechanics consists of replacing, in the Boltzmann–Gibbs distribution, the standard exponential
with its deformed version, accordingly postulating a deformed entropic form which implies a
generalized thermostatistics theory. In this manner, some noteworthy generalizations of the
standard statistical mechanics have been proposed [5–8] and their physical consequences are
currently under investigation [9–11].
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On the other hand, quantum algebra and quantum groups have been the subject of intensive
research in several physical fields from cosmic strings and black holes to the fractional quantum
Hall effect and high-Tc superconductors [12]. From the seminal work of Biedenharn [13] and
Macfarlane [14], it was clear that the q-calculus, originally introduced by Heine [15] and by
Jackson [16] in the study of the basic-hypergeometric series [17, 18], plays a central role
in the representation of the quantum groups with a deep physical meaning and not merely a
mathematical exercise [19, 20]. In this context, it was shown in [21] that a natural realization
of the thermostatistics of q-deformed bosons and fermions can be built on the formalism of
q-calculus.

Furthermore, it is remarkable to observe that the q-calculus is very well suited for to
describe fractal and multi-fractal systems. As soon as the system exhibits a discrete-scale
invariance, the natural tool is provided by Jackson q-derivative and q-integral, which constitute
the natural generalization of the regular derivative and integral for discretely self-similar
systems [22]. In fact, it was shown that q-integral is related to the free energy of spin systems
on a hierarchical lattice [23].

In the recent past, some ideas of constructing a classical counterpart to the quantum
group and q-deformed dynamics have been investigated [24]. Most recently, in [25], a
q-deformed Poisson bracket has been developed whose underlying algebra arising from the
quantum group theory appears to be invariant under the action of the q-symplectic group.
This generalization implies a classical deformed dynamics and a deformed Fokker–Planck
equation [26] whose stationary solution can be expressed in terms of the basic-exponential, the
q-analogue of the exponential function in the framework of the basic-hypergeometric series
(henceforward, we will use the term basic-exponential and basic-thermostatistics to avoid
any confusion with the q-exponential customarily employed in the Tsallis’ thermostatistics
formulation [5]).

The previous investigations raise the interesting question whether the q-calculus and the
basic-exponential can be introduced, as a starting point, for the study of a deformed statistical
thermodynamics at the classical level. Just as the quantum q-deformation plays a crucial role in
the interpretation of several complex physical systems, we expect that a classical q-deformation
of the thermostatistics can be relevant in several physical applications. It is thus worthwhile to
investigate the structure of a classical statistical mechanics where the probability distribution
function is given by employing the basic-exponential. This investigation represents the primary
goal of this paper.

Relating to the previously quoted generalized statistical theories existing in the literature
[5–8], it must be stressed that the deformed exponential functions are very different from that
we are introducing in the present work. The difference arises mainly in the asymptotic
behaviour of the basic-exponential which fails to show a power-law tail. Nevertheless,
some mathematical peculiarities exhibited by the basic-exponential make it relevant in the
construction of a generalized statistical mechanics. First among them is the existence of a
natural cut-off in the energy (velocity) spectrum which appears to be closely related to the
presence of long-range interactions among constituents of the system. To the best of our
knowledge, this was first suggested in [27] in order to overcome the infinity arising in the
mass and radius of an isothermal globular cluster. More recently, concerning several physical
systems, there have been many investigations [28–35] on the relevance of the presence of an
energy cut-off behaviour in the particle distribution functions.

Finally, we should stress that the basic-exponential introduced in the present work is also
employed in the formulation of other interesting generalizations of physical theories such as,
for instance, in the q-deformed Schrödinger theory describing the deformed quantum harmonic
oscillator [36] or in the q-deformed theory of quantum coherence of bosons [37, 38].
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Our paper is organized as follows. In section 2, for convenience of the reader, we review
the main mathematical properties concerning the quantum algebra of real numbers. We
introduce the basic-exponential by means of a power series and derive its main proprieties
which will be used in the formulation of the theory. In section 3, we introduce the basic-
entropy and, by means of a q-version of the variational principle, we determine the deformed
distribution, for each case in turn, of a microcanonical, canonical and grand canonical system.
The thermodynamic structure of the theory is explored in section 4, while in section 5 we
apply the present formalism to a system of q-interacting particles whose q → 1 limit reduces
to the free system. Conclusions are reported in section 6 and we end the paper with two
mathematical appendices.

2. Mathematical background

We shall begin by recalling the main features of the q-calculus for real numbers. It is based
on the following q-commutative relation among the operators x̂ and ∂̂x ,

∂̂x x̂ = 1 + qx̂∂̂x, (2.1)

with q a real and positive parameter.
A realization of the above algebra in terms of ordinary real numbers can be accomplished

by the replacement [39]

x̂ → x, (2.2)

∂̂x → Dx, (2.3)

where Dx is the Jackson derivative [16] defined as

Dx = qx∂x − 1

(q − 1)x
. (2.4)

Its action on an arbitrary real function f (x) is given by

Dxf (x) = f (qx) − f (x)

(q − 1)x
. (2.5)

The Jackson derivative satisfies some simple properties which will be useful in the following.
For instance, its action on a monomial f (x) = xn is given by

Dxx
n = [n]xn−1, (2.6)

and

Dxx
−n = − [n]

qn

1

xn+1
, (2.7)

where n � 0, and

[n] = qn − 1

q − 1
(2.8)

are basic-numbers. By linearity, we can extend the action of Jackson derivative to a generic
polynomial. Moreover, we can easily verify the following q-version of the Leibnitz rule:

Dx(f (x)g(x)) = Dxf (x)g(x) + f (qx)Dxg(x),

= Dxf (x)g(qx) + f (x)Dxg(x). (2.9)
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A relevant role in the q-algebra, as developed by Jackson, is given by the basic-binomial
series defined by

(x + y)(n) = (x + y)(x + qy)(x + q2y) · · · (x + qn−1y)

≡
n∑

r=0

[n
r

]
qr(r−1)/2xn−ryr , (2.10)

where [n
r

]
= [n]!

[r]![n − r]!
(2.11)

is known as the q-binomial coefficient which reduces to the ordinary binomial coefficient in
the q → 1 limit [18]. We should remark that equation (2.11) holds for 0 � r � n, while it is
assumed to vanish otherwise and we have defined [n]! = [n][n − 1] · · · [1]. Equation (2.10)
can be easily generalized to an arbitrary polynomial as shown in appendix B.

Remarkably, a q-analogue of the Taylor expansion has been introduced in [16] by means
of a basic-binomial (2.10) as

f (x) = f (a) +
(x − a)(1)

[1]!
Dxf (x)

∣∣∣∣
x=a

+
(x − a)(2)

[2]!
D2

xf (x)

∣∣∣∣
x=a

+ · · · , (2.12)

where D2
x ≡ DxDx and so on.

Consistently with the q-calculus, we also introduce the basic-integration∫ λ0

0
f (x) dqx =

∞∑
n=0

�qλnf (λn), (2.13)

where �qλn = λn − λn+1 and λn = λ0q
n for 0 < q < 1 whilst �qλn = λn−1 − λn and

λn = λ0q
−n−1 for q > 1 [17, 18, 22]. Clearly, equation (2.13) is reminiscent of the Riemann

quadrature formula performed now in a q-nonuniform hierarchical lattice with a variable step
�qλn. It is trivial to verify that

Dx

∫ x

0
f (y) dqy = f (x), (2.14)

for any q > 0.
Let us now introduce the following q-deformed function defined by the series

Eq(x) =
∞∑

k=0

xk

[k]!
= 1 + x +

x2

[2]!
+

x3

[3]!
+ · · · , (2.15)

which will play the main role in the framework we are introducing. The function (2.15) defines
the basic-exponential, well known in the literature since a long time ago, originally introduced
in the study of basic-hypergeometric series [15, 17, 18]. In this context, let us observe that
definition (2.15) is fully consistent with its Taylor expansion, as given by equation (2.12).

In the following, we briefly review the main algebraic properties of the basic-exponential
useful for our developments.

The basic-exponential is a monotonically increasing function, dEq(x)/dx > 0, convex,
d2Eq(x)/dx2 > 0, with Eq(0) = 1 and reducing to the ordinary exponential in the q → 1
limit: E1(x) ≡ exp(x).

An important property satisfied by the q-exponential can be written formally as [18]

Eq(x + y) = Eq(x)E1/q(y), (2.16)
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where the left-hand side of equation (2.16) must be considered by means of its series expansion
in terms of basic-binomials:

Eq(x + y) =
∞∑

k=0

(x + y)(k)

[k]!
. (2.17)

By observing that (x − x)(k) = 0 for any k > 0, since (x − x)(0) = 1, from equation (2.16)
we obtain

Eq(x)E1/q(−x) = 1. (2.18)

From the above relations, we easily deduce that, if q < 1, the series (2.15) converges for all
finite values of x < 1/(1 − q), otherwise, if q > 1 the series converges for x > q/(1 − q).

Thus, we can summarize the asymptotic behaviour of the basic-exponential as

Eq(−∞) = 0, Eq

(
1

1 − q

)
= +∞, if q < 1, (2.19)

Eq

(
q

1 − q

)
= 0, Eq(+∞) = +∞, if q > 1, (2.20)

where it is important to mention that the first expression of equation (2.20) defines a cut-off
condition of the basic-exponential in the region relevant for the following developments.

Among many properties, it is important to recall the following relation [18]:

DxEq(ax) = aEq(ax), (2.21)

and its dual ∫ x

0
Eq(ay) dqy = 1

a
[Eq(ax) − 1]. (2.22)

It must be pointed out that equations (2.21) and (2.22) are two important properties of the
basic-exponential which turns out to be not true if we employ the ordinary derivative or
integral. In particular, from equation (2.21) for a = 1, we can obtain the further useful
relation

Eq(qx) = [1 + (q − 1)x]Eq(x). (2.23)

Moreover, from equation (2.22) with a < 0, we have∫ xmax

0
Eq(ay) dqy = −1

a
, (2.24)

where xmax → +∞ in the q > 1 case, while xmax = 1/(1 − q) in the q < 1 case, accounting
for the cut-off condition (2.19).

In addition to the basic-exponential, we can also introduce its inverse function, the basic-
logarithm Lnq(x), such that

Eq(Lnq(x)) = Lnq(Eq(x)) = x, (2.25)

which certainly exists because Eq(x) is a strictly monotonic function. Many properties of
the basic-logarithm follow directly from the corresponding ones of the basic-exponential.
For instance, Lnq(x) is a monotonic, increasing and concave function (d Lnq(x)/dx > 0,

d2 Lnq(x)/dx2 < 0), normalized in Lnq(1) = 0 and the asymptotic behaviour is given by

Lnq(0) = −∞, Lnq (+∞) = 1

1 − q
, if q < 1, (2.26)

Lnq(0) = q

1 − q
, Lnq(+∞) = +∞, if q > 1. (2.27)
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Although a definition of Lnq(x) through a series is possible, it appears to be a nontrivial task
to write it in an easy form and, to the best of our knowledge, there are no definitive results in
the literature (see for instance [41]).

We conclude this section by remarking that alternative definitions of the basic-exponential,
by means of a different definition of basic-numbers, have been widely employed in the
literature [42]. Among the many, we may point out the choice based on the symmetric
definition [n]s = (qn − q−n)/(q − q−1). The corresponding symmetric basic-exponential
may be defined on the whole real region (−∞, +∞) and has the symmetry q → 1/q. As a
consequence, the symmetric basic-exponential does not present the cut-off feature.

3. Basic-entropy and its distribution

Equipped with the basic-functions, our aim is to formulate a statistical mechanics based on
the formalism of the q-algebra and to study its main physical implications.

On the basis of the above mathematical framework, it appears natural to generalize the
Boltzmann entropy to the following form:

Sq(p) = −
∫
M

p(λ) Lnqp(λ) dqλ, (3.1)

where p(λ) is probability distribution function labelled by a set of parameters λ running on
the manifold M, eventually identified with the phase space, which define the accessible states
of the system. Henceforward we adopt units where the Boltzmann constant kB = 1.

Equation (3.1) resembles the well-known Boltzmann–Gibbs entropy SBG(p) through the
replacement of the logarithm with the basic-logarithm. Clearly, the function Sq(p) reduces to
the standard entropy SBG(p) ≡ S1(p) in the q → 1 limit. In the following, we shall refer to
the function (3.1) as basic-entropy.

A way to obtain the equilibrium distribution from the entropy Sq(p), given a set of M + 1
constraints �j(p) with j = 0, . . . , M , can be accomplished through the following variational
problem:

δF(p) = 0, (3.2)

with

F(p) =
⎛⎝Sq(p) −

∑
j

µ∗
j�j (p)

⎞⎠ , (3.3)

where µ∗
j are the Lagrangian multipliers associated with the constraints �j(p).

Quite generally, such constraints can be written as

�j(p) =
∫
M

φj (λ)p(λ) dqλ, (3.4)

representing the mean value of the quantities φj (λ) which are identifiable with a suitable
physical observable. In particular, for φ0(λ) = 1, equation (3.4) gives the normalization of
the distribution function.

In order to easily handle the variation problem of equation (3.2), let us introduce the
ansatz

p(λ) = Eq(−f (λ)). (3.5)

We recall that Eq(−x) is a strictly monotonically decreasing function. This means that it
reaches its minimum at points which maximize the functions f (λ).
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Actually, the problem, equation (3.2), can be replaced by the following equivalent
q-variational problem:

δqF̃(f ) = Df F̃(f )�qf = 0, (3.6)

with �qf = (q − 1)f and

F̃(f ) ≡ F(p(f )) =
∫
M

Eq(−f (λ))

⎛⎝f (λ) −
∑

j

µjφj (λ)

⎞⎠ dqλ. (3.7)

It is shown in appendix A that, according to the q-algebra, both the calculus (3.2) and (3.6) give
substantially the same result (apart from a redefinition of the Lagrange multipliers, µj → µ∗

j ,
which, accounting for the relevant constraint equations, has no effect on the expression of the
final distribution). Equation (3.6) can be solved more speedily as

δqF̃(p) =
⎡⎣Df

∫
M

Eq(−f (λ))

⎛⎝f (λ) −
∑

j

µjφj (λ)

⎞⎠ dqλ

⎤⎦�qf

=
⎡⎣∫

M
Eq(−f (λ))

⎛⎝qf (λ) − 1 −
∑

j

µjφj (λ)

⎞⎠ dqλ

⎤⎦�qf = 0, (3.8)

which implies the following relation:

f (λ) = q−1

⎛⎝1 +
∑

j

µjφj (λ)

⎞⎠ , (3.9)

and accounting for equation (3.5) we obtain the general solution in the form

p(λ) = Eq

⎛⎝−q−1

⎛⎝1 +
∑

j

µjφj (λ)

⎞⎠⎞⎠ . (3.10)

It is easy to verify that this expression reduces, in the q → 1 limit, to the ordinary Gibbs
distribution. Let us separately consider three main cases: the microcanonical system, the
canonical system and the grand canonical system.

3.1. Microcanonical system

We consider a closed system with a given fixed energy U, volume V and particle number N.
In this case, the system is forced by the only constraint∫

M
p(λ) dqλ = 1, (3.1.1)

which assures the normalization of the distribution.
Before proceeding, let us spend a few word about equation (3.1.1) to better understand

the underlying physical meaning of the q-calculus. By taking into account the definition of
the basic-integral (2.13), for 0 < q < 1, we obtain∫

M
p(λ) dqλ = λ0(1 − q)[p(λ0) + qp(λ1) + q2p(λ2) + · · ·], (3.1.2)

where λ0 is a constant and λi = qiλ0. This expression shows two important features of
the theory we are developing. First, the q-integral plunges, in a natural way, to consider a
q-deformed lattice whose amplitude of the elementary cell �qλ0 = λ0(1 − q) is shrunken,
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step by step, by the quantity qn. This is a substantially different situation with respect to
the standard case obtained in the q → 1 limit where any probability (differential probability)
is multiplied by an equal (infinitesimal) quantity: dp(x) = p(x) dx. Second, the parameter
space assumes a fractal structure given by the rule λn = qnλ0. We recognize a self-similarity
in the parameter space since, starting from any level N > 1, the same structure λN+n = qnλN

is discovered.
Remarkably, by introducing a set of discrete probability distributions pn, related to p(λ),

as

pn = �qλnp(λn), (3.1.3)

equation (3.1.1) becomes

∞∑
i=0

pi = 1. (3.1.4)

Clearly, the same considerations also hold in the q > 1 case.
In order to derive the expression for p(λ) we introduce the following constrained entropic

functional:

F(p) = −
∫
M

p(λ)[Lnq p(λ) + α] dqλ, (3.1.5)

where α is the Lagrange multiplier associated with equation (3.1.1).
By inserting the ansatz (3.5) into equation (3.1.5) we obtain

F̃(f ) =
∫
M

Eq(−f (λ))(f (λ) − α) dqλ. (3.1.6)

By evaluating the equation δqF̃(f ) = 0, accounting for equations (2.9) and (2.21), we obtain

δqF̃(f ) = Eq(−f (λ))(1 + α − qf (λ)) = 0. (3.1.7)

The above expression implies the following equation:

Lnq p(λ) + q−1(1 + α) = 0, (3.1.8)

which gives the microcanonical distribution in the form

p(λ) = Eq(−q−1(1 + α)). (3.1.9)

(We refer to appendix B for a systematic derivation of equation (3.1.9)).
Since the above expression does not depend on λ, by accounting for the condition (3.1.1),

we obtain the expected microcanonical uniform distribution

p = 1

W
, (3.1.10)

where the number of accessible states

W(U,V,N) =
∫
M

dqλ (3.1.11)

is related to the Lagrange multiplier through the relation α = −1 − q Lnq(1/W), which is a
function of the energy, the volume and the total number of particles in the system.
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3.2. Canonical system

By following the steps described in the previous subsection, we can derive the canonical
distribution for an open system that exchanges energy with the surrounding. In this case, let
us pose ε ≡ ε(λ) the energy of the system still labelled through λ so that, along with the
constraint (3.1.1), we impose the further condition on the mean energy∫

M
ε(λ)p(ε(λ)) dqλ = 〈ε〉. (3.2.1)

Accounting for definition (2.13) this last condition becomes (0 < q < 1)

λ0(1 − q)[ε0p(ε0) + qε1p(ε1) + q2ε2p(ε2) + · · ·] = 〈ε〉, (3.2.2)

where εi ≡ ε(λi) so that the q-calculus implies a fractal structure in the energy spectrum. With
the position (3.1.3) we realize that the constraint (3.2.1) on the mean energy is equivalent to
the standard definition

∞∑
i=0

εipi = 〈ε〉, (3.2.3)

although the fractal structure in the energy spectrum still holds being implicitly contained in
the definition of the discrete probabilities pi .

After introducing the constrained entropic functional

F(p) = −
∫
M

p(ε(λ))[Lnq p(ε(λ)) + α + βε(λ)] dqλ, (3.2.4)

with α and β being the Lagrange multiplier associated with equations (3.1.1) and (3.2.1), by
imposing the ansatz (3.5) we deal with the variational problem δqF̃(f ) = 0 where

F̃(f ) =
∫
M

Eq(−f (ε(λ)))[f (ε(λ)) − α − βε(λ)] dqλ, (3.2.5)

and whose solution reads

Lnq p(ε) + q−1(1 + α + βε) = 0. (3.2.6)

According to the q-algebra described in equation (B.4), with x = Lnq p(ε), y = q−1(1 + α)

and z = q−1βε, from equation (3.2.6) we derive the following canonical distribution:

p(ε) = Eq(−q−1(1 + α))Eq(−βqε), (3.2.7)

where βq = q−1β (see appendix B). By imposing the normalization condition (3.1.1) on the
distribution p(ε), we obtain

p(ε) = 1

Zq

Eq(−βqε), (3.2.8)

where Zq is the canonical partition function defined by

Zq = E1/q(q
−1(1 + α)) =

∫
M

Eq(−βqε(λ)) dqλ. (3.2.9)

Trivially, equation (3.2.8) reduces to the canonical Gibbs distribution in the q → 1 limit.
We remark that, for q < 1 all the energy levels ε can be occupied. For q > 1, however, the

distribution (3.2.8) shows a cut-off in the energy spectrum due to the finite convergence radius
of the function Eq(x). This is an important consequence of the theory under investigation
which limits the number of states accessible to the system. Its origin can be related, as
generally accepted, to the presence of interactions among the parts of the system, whose effect
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Figure 1. Generalized Boltzmann distribution Eq(−βqε) for different values of the deformed
parameter q. The solid line coincides with the standard exponential function exp(−βε).

is to reduce the volume of the phase space. This peculiarity is also encountered in other
statistics mechanical models based on generalized entropic forms.

In particular, equation (2.20) imposes the following limiting condition on the energy
levels ε < εmax, where

εmax = q

(q − 1)βq

. (3.2.10)

Physically, this means that all the microscopic configurations of the phase space corresponding
to an energy ε beyond εmax are statistically unattainable. We remark that εmax is a function
of βq which plays the role of the inverse of a pseudo temperature. Its value is determined
through equation (3.2.1) and it is expected, like in the undeformed theory, that βq decreases
as the mean energy increases. It means that the cut-off condition plays a relevant role in those
small systems whose mean energy is small compared with the typical energy values of the
macroscopic systems. This is reminiscent of a quantum scenario although our system is a
classical one. In figure 1, we illustrate the behaviour of the basic Boltzmann factor Eq(−βqε)

for different values of the deformation parameter q compared with the classical one given by
q = 1. It is observed that for q < 1 high energy events are enhanced with respect to the
standard case while, for q > 1, events are more and more inhibited when energy increases
until it reaches the cut-off point, where p(ε) = 0.

In figure 2, we show the basic-entropy for a system of two levels with probabilities p
and 1 − p, respectively, for different values of the deformation parameter. The dashed line
represents the asymptotic curve reached for q � 1.

Again, we stress that such a cut-off feature is also shown by other distributions obtained
from physically motivated generalizations of the Boltzmann–Gibbs entropy. For instance,
it can be shown [10] that for suitably chosen deformation parameters generalized entropies
belonging to the two-parameter family of Sharma–Mittal [43], which also include among the
others the well-known Tsallis’ entropy [5] and the Rènyi’s entropy [44], generate probability
distribution functions which exhibit a cut-off in their tails. Nevertheless, it is worthwhile
to observe that almost all the members belonging to the Sharma–Mittal family, with some
exception such as the Boltzmann–Gibbs entropy and the Gaussian entropy, have an asymptotic
power-law behaviour. This differs substantially from the asymptotic behaviour shown by
basic-distribution, which is more similar to that of the stretched exponential. In this respect,
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Figure 2. Plot of basic-entropy, for different values of the deformation parameter, for a system
with two levels. The dashed line represents the asymptotic curve reached for q � 1.

the theory under investigation is not an alternative but complementary to the already existing
generalized version of the statistical mechanics, since it can be relevant in the study of those
complex systems which are not characterized by an asymptotic free-scale behaviour.

3.3. Grand canonical system

Finally, let us investigate the grand canonical distribution describing an open system where
energy and particles can be exchanged with the surrounding. This can be accomplished by
imposing the following constraints∑

N

∫
M

pN(ε(λ)) dqλ = 1, (3.3.1)

∑
N

∫
M

ε(λ)pN(ε(λ)) dqλ = 〈ε〉, (3.3.2)

∑
N

∫
M

NpN(ε(λ)) dqλ = 〈N〉, (3.3.3)

on the normalization, the mean energy and the mean particle number, where N = 1, . . . ,∞,
enumerate the particles contained in the system.

The distribution function is found just as in the former cases. We form the constrained
entropic functional

F(p) = −
∑
N

∫
M

pN(ε(λ))[Lnq pN(ε(λ)) + α + βε(λ) + γN ] dqλ, (3.3.4)

where α, β and γ are the Lagrange multipliers associated with the constraints (3.3.1)–(3.3.3),
respectively. By evaluating the equation δqF̃(f ) = 0, with

F̃(f ) =
∑
N

∫
M

Eq(−fN(ε(λ)))[fN(ε(λ)) − α − βε(λ) − γN ] dqλ, (3.3.5)

obtained from equation (3.3.4) by using the ansatz pN(ε) = Eq(−fN(ε)), we derive the
following result:

Lnq pN(ε) + q−1(1 + α + βε − µβN) = 0, (3.3.6)
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where we set γ = −µβ. According to the q-algebra (B.4) with x = LnqpN(ε), y =
q−1(1 + α), z = q−1βε and u = −q−1µβN , from equation (3.3.6) we obtain the grand
canonical distribution function in the form

pN(ε) = 1

Zq

Eq(−βqε)Eq(µβqN), (3.3.7)

where

Zq = E1/q(q
−1(1 + α)) =

∑
N

∫
M

Eq(−βqε(λ))Eq(µβqN) dqλ (3.3.8)

is the grand partition function.

4. Some thermodynamic relations

In the following, we shall investigate the thermodynamic structure of the theory. It is shown
that some basic relations of the standard theory can be transcribed in a straightforward manner
in the present formalism establishing, in this way, the ground for a generalized classical
thermodynamics based on the framework of the q-algebra.

To begin with, we observe that by multiplying equation (3.3.6) by pN(ε) and taking into
account all the constraints imposed on the system, we obtain the relation

Sq(〈ε〉, 〈N〉, V ) = Ln1/q Zq + βq〈ε〉 − µβq〈N〉, (4.1)

where we set Ln1/q Zq = q−1(1 + α) as it follows from equation (3.3.8). Equation (4.1)
mimics the standard relation S = lnZ + βU − µβN which is recovered in the q → 1 limit.

If one is willing to identify the quantity βq with the inverse of the temperature βq = 1/T ,
equation (4.1) can be rewritten as

〈ε〉 = T Sq − T Ln1/q Zq + µ〈N〉. (4.2)

On the other hand, in analogy with standard thermodynamics, we can introduce the pressure
P and the volume V of the system by requiring that all the thermodynamics variables are
functionally related through the following relationship:

〈ε〉 = T Sq − PV + µ〈N〉, (4.3)

which is a constitutive equation for the theory under investigation and can be identified with
the q-analogue of the Euler’s equation [45]. By comparing equations (4.2) and (4.3) we are
thus encouraged to define the pressure through the relation

PV = T Ln1/q Zq, (4.4)

which represents the q-generalized state equation for a system described by the basic-entropy.
The partition function (3.2.9), as well as the grand partition function (3.3.8), is a useful

tool to evaluate the statistical proprieties of the system. In fact, by evaluating the Jackson
derivative of Zq as

Dβq
Zq = Dβq

∫
M

Eq(−βqε(λ)) dqλ = −
∫
M

ε(λ)Eq(−βqε(λ)) dqλ, (4.5)

where equation (2.21) has been used, we obtain the result

〈ε〉 = − 1

Zq

Dβq
Zq, (4.6)

which in the q → 1 limit reduces to the well-known relation 〈ε〉 = −(dZ/dβ)/Z.
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Similar results can be obtained starting from the function Zq as follows:

〈ε〉 = − 1

Zq

Dβq
Zq, (4.7)

〈N〉 = 1

βqZq

DµZq . (4.8)

Incidentally, by using the prescription

ε → ε + δA(ε), (4.9)

where A(ε) is an arbitrary physical observable, the expectation value of A can be obtained as

〈A〉 = − 1

βqZq

DδZq

∣∣∣∣
δ=0

. (4.10)

In this sense, the partition function encodes all the statistical information contained in the
system.

Another physically relevant quantity is obtained starting from the expression

Dβq
〈ε〉 = Dβq

(
1

Zq(βq)

∫
M

ε(λ)Eq(−βqε(λ)) dqλ

)
, (4.11)

where we have explicitly indicated the dependence on βq in the partition function. By taking
into account equation (2.23), we can derive the result

Dβq
〈ε〉 = − 〈ε2〉 − 〈ε〉2

1 − (q − 1)βq〈ε〉 ≡ −σ 2
q,ε, (4.12)

where 〈ε2〉 = ∫ ε2p(ε) dqλ.
In the q → 1 limit, we obtain the classical relation d〈ε〉/dβ = −σ 2

ε .
The quantity σq,ε measures the fluctuation of the energy of the system around its mean

value 〈ε〉. It is observed that, compared to the classical case, such fluctuations are reduced for
q < 1 and are enlarged for q > 1.

Alternatively, by mimicking the classical definition, one can introduce the heat capacity
by

CV = −β2
qDβq

〈ε〉 ≡ (βqσq,ε)
2, (4.13)

so that the relative width of the fluctuations in energy is given by

σq,ε

〈ε〉 = 1

βq〈ε〉
√

CV . (4.14)

Similar derivations can also be made for the grand canonical case where, together with
equation (4.12), we can also obtain the further relation

Dµ〈N〉 = βq

〈N2〉 − 〈N〉2

1 + (q − 1)µβq〈N〉 ≡ σ 2
q,N , (4.15)

with 〈N2〉 =∑N

∫
N2pN(ε) dqλ, which measures the deviation from the mean value 〈N〉.
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5. Basic-ideal gas

In this section, to illustrate the consequences of our generalized thermodynamical model, we
discuss a simple basic-noninteracting particle gas which reduces, in the q → 1 limit, to the
well-known ideal gas.

Let us start from the following Hamiltonian H0 describing a system of N identical particles:

H0(�p) =
N∑

i=1

p2
i

2m
, (5.1)

where �p ≡ (p1, . . . ,pN) is the 3N -vector momenta. In order to be consistent with our model,
we require that the momenta pi obey the q-algebra discussed in appendix B. In this case, we
can verify that the canonical distribution f (�p) obtained from the basic-entropy (3.1) with the
mean energy constraint∫

M
H(�p)f (�p) d3N

q x d3N
q p = 〈ε〉 (5.2)

can be factorized as follows:

f (�p) =
N∏

i=1

f (pi ). (5.3)

Here, f (pi ) is the probability distribution function of a single particle

f (pi ) = 1

Zq,i

Eq

(
−βq

p2
i

2m

)
, (5.4)

with p2
i = p2

x,i + p2
y,i + p2

z,i and

Zq,i =
∫
M

Eq

(
−βq

p2
i

2m

)
d3

qxi d3
qpi = Vi,q

(
2πmq

βq

)3/2

, (5.5)

in units where h̄ = 1. In the above equation, we have posed Vi,q = ∫M d3
qxi , the fractal volume

occupied by the ith particle and mq = mAq where

Aq = 1√
π

∫ ∞

0
Eq(−x2) dqx (5.6)

is a constant reducing to unity in the q → 1 limit. The canonical partition function of the
whole system is given by

Zq =
N∏

i=1

Zq,i = V N
q

(
2πmq

βq

)3N/2

. (5.7)

We may note that equation (5.4) can be interpreted as the q-deformed version of the Maxwell–
Boltzmann distribution. It differs formally from the well-known classical distribution by the
mere replacement of the standard exponential with its q-deformed generalization, consistently
with the q-algebra underlying the mathematical structure of the theory.

Employing the distribution f (�p), we can compute the mean value of any observable
associated with the system. In particular, the mean energy is given by

〈ε〉 = q− 3
2 N

[
3

2
N

]
1

βq

, (5.8)

From equation (5.8), we recognize in the q → 1 limit the well-known result 〈ε〉 = 3
2NT . We

observe that

〈ε〉 → +∞ for q 
 0 and 〈ε〉 → 0 for q � 1, (5.9)
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which is a consequence of the dependence of f (�p) on q. In fact, for smaller and smaller q the
tail of the distribution is enhanced so that particles with high energy give a larger contribution.
In contrast, for larger and larger q the cut-off inhibits the occupation by the system of the
phase-space cells with high energy and only particles with lower and lower energy contribute
to 〈ε〉. In particular, for q � 1 the distribution f (�p) → δ(�0) so that only the fundamental
level is populated. Similar arguments can be applied to justify the expression of the heat
capacity given by

CV = q− 3
2 N−1 [ 3

2N
]
, (5.10)

which is a constant as in the undeformed classical case, but it is a monotonically decreasing
function reducing to zero for q � 1.

It is important to outline that the free particle gas with the Hamiltonian (5.1) has the
q-deformed particle distribution (5.4) only if we require, as a crucial assumption, that the
particle momenta obey the q-algebra. On the other hand, if we do not employ the appropriate
q-algebra, the same free q-deformed particle distribution (5.4) can be obtained by assuming
the following N-body interacting Hamiltonian

H(�p) = − 1

βq

Lnq

(
N∏

i=1

E1/q

(
βq

p2
i

2m

))
. (5.11)

This suggests that the effects of the basic-deformation of a free-ideal gas can be viewed as an
effective interaction described by the Hamiltonian (5.11). We remark that in the q → 1 limit
the q-algebra reduces to the ordinary algebra used in the Hamiltonian (5.11). Furthermore,
the same Hamiltonian (5.11) reduces to the Hamiltonian of an N-free particles system.

It may be important to clarify this point. In several papers [8, 46–48], it has been
suggested that, starting from a deformed exponential derived through physically and/or
mathematically justified arguments, it is possible to introduce a deformed sum in order
to reproduce, in a deformed fashion, the well-known multiplicative rule of the standard
exponential exp(x + y) = exp(x) exp(y). It has been conjectured (see for instance [49, 50])
that such a deformed sum can be employed, on physical grounds, to take into account the
complex interactions arising among the many-body colliding particles of a nonlinear medium.
This has been discussed, for instance, explicitly in the Tsallis-entropy framework [51]. In that
case in fact, for the deformed sum of the energy values EA and EB belonging to two different
subsystems A and B, it has been assumed that the expression describes the q-sum

EA ⊕q EB = EA + EB +
1 − q

β
EAEB, (5.12)

and correspondingly the q-Boltzmann factor factorizes according to

expq(−β(EA ⊕q EB)) = expq(−βEA) expq(−βEB). (5.13)

The same situation occurs in the Kaniadakis-entropy framework [7] where, by assuming

EA κ⊕ EB = EA
√

1 + (κβEB)2 + EB
√

1 + (κβEA)2, (5.14)

for the energy levels, it has been shown that the κ-Boltzmann factor factorizes in

exp{κ}(−β(EA κ⊕ EB)) = exp{κ}(−βEA) exp{κ}(−βEB). (5.15)

Of course, all of this can also be reproduced within the formalism employed in the present
work. In fact, we can verify that the following deformed sum

EA ⊕ EB = − 1

β
Lnq(E1/q(βEA)E1/q(βEA)), (5.16)
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which reduces to the ordinary sum in the q → 1 limit, fulfils the factorization rule

Eq(−β(EA ⊕ EB)) = Eq(−βEA)Eq(−βEB), (5.17)

for the basic-Boltzmann factor. We easily recognize in definition (5.16) the origin of the
Hamiltonian (5.11). Although it is beyond the scope of the present paper, it is also possible to
show that the basic-sum (5.16) obeys all the axiomatic properties where a well-defined sum
must satisfy associativity, commutativity, existence and uniqueness of the inverse element and
of the identity element. However, by applying the appropriate q-algebra introduced starting
from the q-binomial expansion, the deformed sum x ⊕ y is replaced, in a natural way, by the
ordinary sum x + y. This aspect makes the basic-thermostatistics formalism very interesting,
because the structure of the considered deformation implies a close and consistent realization
in the well-known mathematical framework of q-calculus.

6. Conclusion

In this paper, we have studied a possible generalization of the thermostatistics theory of a
classical system based on the q-deformed algebra. Starting from the definition of the basic-
exponential, we have introduced a generalized entropic function and derived, by means of a
consistent q-variational principle, a deformed probability distribution function which differs
from the standard Gibbs distribution by the replacement of the ordinary exponential function
with its generalization furnished by the basic-exponential. We have performed a preliminary
investigation of some fundamental thermodynamic relations which are preserved consistently
with the formalism of the q-calculus.

On physical grounds, it has been demonstrated that the distribution arising in this model
exhibits a cut-off in the energy spectrum which is generally expected in those systems whose
underlying dynamics is governed by long-range interactions. Such a feature has also been
observed in other distributions proposed in the literature, obtained from generalized versions
of the Boltzamnn–Gibbs entropy. What is different here is the asymptotic behaviour of the
distribution derived in this paper which does not match with the power-law behaviour typically
shown by the other generalized distributions.

We have studied, within the present formalism, an N-body system of interacting particles
described by the Hamiltonian (5.11), whose interaction vanishes in the q → 1 limit.
By construction, the canonical distribution function of this system is formally equivalent
to the one derived starting from the Hamiltonian (5.1), describing a system of non-
interacting particles, where the momenta obeying the q-algebra originates from the q-binomial
expansion (2.10). In this sense, the toy model described by the Hamiltonian (5.11) can be
considered as the q-analogue of the ideal gas.

Jackson q-derivative and q-integral being the natural tools for describing discrete-scale
invariance [22, 23], we expect that this study can be a very useful starting point on the
basic-thermostatistic theory which can be strictly related to critical phenomena (such as
growth processes, rupture, earthquake, financial crashes) with the existence of log-periodic
oscillations deriving from a partial breakdown of the continuous scale-invariance symmetry
into a discrete-scale-invariance symmetry, as occurs for instance in hierarchical lattice [52].
In fact, as mentioned in subsections 3.1 and 3.2, our study on the basic-thermostatistics
incorporates implicitly a self-similarity in the parameter space, labelling the phase space of
the system, and, consequently, a fractal structure in the energy spectrum emerges. In this
context, it is remarkable to observe that, for example, the specific heat corresponding to
systems with deterministic fractal energy is known to present log-periodic oscillations as a
function of the temperature around a mean value given by a characteristic dimension of the
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energy spectrum [53–55]. A detailed study of these critical phenomena in our formalism lies
on the scope of this paper and will be the matter of future investigations.
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Appendix A

As known, a possible way to obtain the stationary distribution of a system governed by a given
entropy, under a set of suitable physically constraints, follows by means of the variational
calculus on the constrained entropic form. In the case under investigation, accounting the
q-algebra underlying our formalism, we have to deal with the following problem:

δF(p) = 0, (A.1)

where, according to equation (3.3),

F(p) = −
∫
M

p(λ)

⎡⎣Lnq(p(λ)) +
∑

j

µ∗
jφj (λ)

⎤⎦ dqλ. (A.2)

Without loss of generality, we pose µ∗
0 = q−1(1 + µ0) − 1 and µ∗

i = q−1µi for i = 1, . . . ,M ,
where µj are the Lagrange multipliers of the M + 1 constraints (3.4) introduced in section 3.

By using the ansatz (3.5) inF(p) ≡ F̃(p(f )), equation (A.1) can be computed as follows:

δF̃(f ) = lim
t→0

⎧⎨⎩
∫
M

⎡⎣f (λ) + th(λ) −
∑

j

µ∗
jφj (λ)

⎤⎦Eq(−f (λ) − th(λ)) dqλ

−
∫
M

⎡⎣f (λ) −
∑

j

µ∗
jφj (λ)

⎤⎦Eq(−f (λ)) dqλ

⎫⎬⎭
= d

dt

∫
M

⎡⎣f (λ) + th(λ) −
∑

j

µ∗
jφj (λ)

⎤⎦Eq(−f (λ) − th(λ)) dqλ

∣∣∣∣∣∣
t=0

=
∫
M

⎡⎣h(λ) +

⎛⎝f (λ) + th(λ) −
∑

j

µ∗
jφj (λ)

⎞⎠ d
dt

E1/q(−th(λ))

E1/q(−th(λ))

⎤⎦
t=0

Eq(−f (λ)) dqλ,

(A.3)

where Eq(−f − th) = Eq(−f )E1/q(−th) according to equation (2.16).
By taking into account definition (2.15) we have

d

dt
E1/q(−th(λ)) =

∑
n=1

n

[n]!
(−h(λ))tn−1

∣∣∣∣
t=0

= −h(λ), (A.4)

so that from equation (A.3) we obtain

δF̃(f ) =
∫
M

h(λ)

⎛⎝1 − f (λ) +
∑

j

µ∗
jφj (λ)

⎞⎠Eq(−f (λ)) dqλ = 0. (A.5)
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Accounting for the arbitrariness of the function h(λ) this last equation implies

f (λ) = 1 +
∑

j

µ∗
jφj (λ), (A.6)

in accordance with equation (3.9) given in the text.

Appendix B

We present a generalization of the algebra (2.10) to a trinomial with the purpose of extending
the factorization formula of the basic-exponential.

First, let us briefly review the derivation of equation (2.16).
This can be shown easily by considering the Cauchy product among the series (2.15) and

its analogue for q → 1/q. We obtain

Eq(x)E1/q(y) = 1 +

(
x

[1]!
+

y

[1]!

)
+

(
x2

[2]!
+

xy

[1]![1]!
+

y2

[2]!

)
+ · · ·

+

(
xn

[n]!
+

xn−1y

[n − 1]![1]!
+

qxn−2y2

[n − 2]![2]!
+ · · · +

qn(n−1)/2yn

[n]!

)
+ · · · , (B.1)

which, by means of equation (2.10), can be rewritten in the form

Eq(x)E1/q(y) = 1 +
(x + y)(1)

[1]!
+

(x + y)(2)

[2]!
+ · · · +

(x + y)(n)

[n]!
+ · · · , (B.2)

and coincides with the definition of Eq(x + y) given in equation (2.17).
To generalize this result, we consider the following q-binomial expansions:

(x + z)(0) = 1,

(x + z)(1) = x + z,

(x + z)(2) = x2 + [2]xz + qz2,

(x + z)(3) = x3 + [3]x2z + q[3]xz2 + q3z3,

(B.3)

and so on. By redefining x → x + y and consequently xn → (x + y)(n), we obtain

((x + y) + z)(0) = 1,

((x + y) + z)(1) = x + y + z,

((x + y) + z)(2) = (x + y)(2) + [2](x + y)(1)z + qz2

= x2 + [2]xy + qy2 + [2]xz + [2]yz + qz2,

((x + y) + z)(3) = (x + y)(3) + [3](x + y)(2)z + q[3](x + y)(1)z2 + q3z3

= x3 + [3]x2y + q[3]xy2 + q3y3 + [3]x2z

+ [2]xyz + qy2z + q[3]xz2 + q[3]yz2 + q3z3, (B.4)

which implies the following factorization rule for the basic-exponential:

Eq(x + y + z) = Eq(x + y)E1/q(z) = Eq(x)E1/q(y)E1/q(z). (B.5)

On the other hand, starting from the q-binomial expansion (B.3) and by posing zn →
(y + z)

(n)
1/q

5 we form the q-trinomial expansion (x + (y + z)1/q)
(n) which implies the following

decomposition:

Eq(x + y + z) = Eq(x)E1/q(y + z) = Eq(x)E1/q(y)Eq(z). (B.6)

5 We have introduced the index 1/q to indicate the replacement q → 1/q in the expansion of the q-binomial given
in equation (2.10).
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Other possible factorization rules can be realized through the introduction of suitable
q-deformed algebras, as can be seen by inspection. Extension to an arbitrary polynomial
can also be easily obtained.

In the following, let us show the use of the above algebra in the derivation of the
distributions (3.1.9), (3.2.7) and (3.3.7). Starting from the equality

x + y = 0, (B.7)

and employing the q-algebra (B.3), we can construct the q-binomial (x + y)(n) = 0 which
of course vanishes for all n > 0. Consequently, according to definition (2.15), by dividing
equation (B.7) by [n]! and summing up over n = 0, . . . ,∞, we obtain

Eq(x + y) = Eq(x)E1/q(y) = 1. (B.8)

In particular, by applying this result to equation (3.1.8) which has the form (B.7), with
x = Lnq p(ε) and y = q−1(1 + α), we obtain

Eq(Lnq p(ε))E1/q(q
−1(1 + α)) = 1, (B.9)

so that

p(ε) = Eq(−q−1(1 + α)), (B.10)

and according to the property (2.18) we obtain equation (3.1.9) given in section 3.1.
In the same manner, from the equality

Lnq p(ε) + q−1(1 + α + βε) = 0, (B.11)

given in equation (3.2.6), employing the q-algebra (B.4) with x = Lnqp(ε), y = q−1(1 + α)

and z = q−1βε, it follows that

Eq(Lnq p(ε))E1/q(q
−1(1 + α))E1/q(q

−1βε) = 1, (B.12)

or equivalently

pi = Eq(−q−1(1 + α))Eq(−q−1βε), (B.13)

and again by using the property (2.18) it can be written in the form (3.2.7) given in section 3.2.
Similar arguments can be applied to obtain the distribution (3.3.7) by employing the appropriate
q-algebra with x = Lnq p(ε), y = q−1(1 + α), z = q−1βε and u = q−1µβN .

References
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